Research on a New Method based on Improved ACO Algorithm and SVM Model for Data Classification
نویسندگان
چکیده
Because the properties of data are becoming more and more complex, the traditional data classification is difficult to realize the data classification according to the complexity characteristic of the data. Support vector machine is a machine learning method with the good generalization ability and prediction accuracy. So an improved ant colony optimization(ACO) algorithm is introduced into the support vector machine(SVM) model in order to propose a new data classification(ERURACO-SVM) method. In the ERURACO-SVM method, the pheromone evaporation rate strategy and pheromone updating rule are introduced into the ACO algorithm to improve the optimization performance of the ACO algorithm, and then the parallelism, global optimization ability, positive feedback mechanism and strong robustness of the improved ACO algorithm is used to find the optimal combination of parameters of the SVM model in order to improve the learning performance and generalization ability of the SVM model and establish the optimal data classification model. Finally, the experimental data from the UCI machine learning database are selected to validate the classification correctness of the ERURACO-SVM method. The experiment results show that the improved ACO(ERURACO) algorithm has better optimization performance for parameters selection of the SVM model and the ERURACO-SVM method has higher classification accuracy and better generalization ability.
منابع مشابه
A new classification method based on pairwise SVM for facial age estimation
This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...
متن کاملStudy on A Fault Diagnosis Method of Rolling Element Bearing Based on Improved ACO and SVM Model
The vibration signal is nonstationary and it is difficult to acquire the sample with typical fault. An improved ACO algorithm based on adaptive control parameters is introduced into SVM model to propose a new fault diagnosis (IMASFD) method in this paper. In the IMASFD method, the EMD method is used to decompose fault vibration signal into IMF components, the energy of IMF components is selecte...
متن کاملPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
متن کاملروشی جدید برای عضویتدهی به دادهها و شناسایی نوفه و دادههای پرت با استفاده از ماشین بردار پشتیبان فازی
Support Vector Machine (SVM) is one of the important classification techniques, has been recently attracted by many of the researchers. However, there are some limitations for this approach. Determining the hyperplane that distinguishes classes with the maximum margin and calculating the position of each point (train data) in SVM linear classifier can be interpreted as computing a data membersh...
متن کاملClassification of polarimetric radar images based on SVM and BGSA
Classification of land cover is one of the most important applications of radar polarimetry images. The purpose of image classification is to classify image pixels into different classes based on vector properties of the extractor. Radar imaging systems provide useful information about ground cover by using a wide range of electromagnetic waves to image the Earthchr('39')s surface. The purpose ...
متن کامل